Geophysical imaging of the Yellowstone hydrothermal plumbing system

Hurwitz, S. & Lowenstern, J. B. Dynamics of the Yellowstone hydrothermal system. Rev. Geophys. 52, 375–411 (2014). ADS  Google Scholar  Morgan, L. A., Shanks, W. C. & Pierce, K. L. Hydrothermal processes above the Yellowstone magma chamber: large hydrothermal systems and large hydrothermal explosions. Geol. Soc. Am. Spec. Pap. 459, […]

  • Hurwitz, S. & Lowenstern, J. B. Dynamics of the Yellowstone hydrothermal system. Rev. Geophys. 52, 375–411 (2014).

    ADS 

    Google Scholar
     

  • Morgan, L. A., Shanks, W. C. & Pierce, K. L. Hydrothermal processes above the Yellowstone magma chamber: large hydrothermal systems and large hydrothermal explosions. Geol. Soc. Am. Spec. Pap. 459, 1–95 (2009).


    Google Scholar
     

  • Fournier, R. O. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu. Rev. Earth Planet. Sci. 17, 13–53 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Truesdell, A. H., Nathenson, M. & Rye, R. O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J. Geophys. Res. 82, 3694–3704 (1977).

    ADS 
    CAS 

    Google Scholar
     

  • Finn, C. A., Bedrosian, P. A., Bloss, B. R., Holbrook, W. S. & Auken, E. Airborne electromagnetic and magnetic survey, Yellowstone National Park, 2016 – minimally processed data. US Geol. Surv. ScienceBase Data Release https://doi.org/10.5066/P9MCJ9B6 (2021).

  • US Geological Survey. An Aeromagnetic Survey in Yellowstone National Park: a web site for distribution of data (on-line edition). US Geol. Surv. Open-File Report 00-163 https://pubs.usgs.gov/of/2000/ofr-00-0163/ (2000).

  • Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Petrol. Eng. 146, 54–62 (1942).


    Google Scholar
     

  • Christiansen, R. L. The quaternary and pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. US Geol. Surv. Prof. Pap. 729-G, G1–G150 (2001).


    Google Scholar
     

  • Livo, K. E., Kruse, F. A., Clark, R. N., Kokaly, R. F. & Shanks III, W. US Geol. Surv. Prof. Pap. 1717, 493–507 (2007).

  • White, D. E., Fournier, R. O., Muffler, L. J. P. & Truesdell, A. H. Physical results of research drilling in thermal areas of Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 892, 70 (1975).


    Google Scholar
     

  • Bibby, H., Caldwell, T., Davey, F. & Webb, T. Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J. Volcanol. Geotherm. Res. 68, 29–58 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Hochstein, M. P. & Soengkono, S. Magnetic anomalies associated with high temperature reservoirs in the Taupo Volcanic Zone (New Zealand). Geothermics 26, 1–24 (1997).


    Google Scholar
     

  • Rowland, J. & Sibson, R. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 4, 259–283 (2004).


    Google Scholar
     

  • Simmons, S. F., White, N. C. & John, D. A. in Economic Geology, One Hundredth Anniversary Volume (eds Hedenquist, J. W. et al.) 485–522 (Society of Economic Geology, 2005).

  • Farrell, J., Smith, R. B., Husen, S. & Diehl, T. Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys. Res. Lett. 41, 3068–3073 (2014).

    ADS 

    Google Scholar
     

  • Nordstrom, D. K., McCleskey, R. B. & Ball, J. W. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid–sulfate waters. Appl. Geochem. 24, 191–207 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Farrell, J., Smith, R. B., Taira, T. A., Chang, W. L. & Puskas, C. M. Dynamics and rapid migration of the energetic 2008–2009 Yellowstone Lake earthquake swarm. Geophys. Res. Lett. 37, 19305–19309 (2010).

  • Shelly, D. R. & Hardebeck, J. L. Illuminating faulting complexity of the 2017 Yellowstone Maple Creek earthquake swarm. Geophys. Res. Lett. 46, 2544–2552 (2019).

    ADS 

    Google Scholar
     

  • Waite, G. P. & Smith, R. B. Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. J. Geophys. Res. Solid Earth 107, 1–15 (2002). ESE 1-1-ESE.

    ADS 

    Google Scholar
     

  • Gardner, W. P., Susong, D. D., Solomon, D. K. & Heasler, H. P. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park. Geochem. Geophys. Geosystems 12 (2011).

  • Dobson, P. F., Kneafsey, T. J., Hulen, J. & Simmons, A. Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming. J. Volcanol. Geotherm. Res. 123, 313–324 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Bouligand, C. et al. Heat and mass transport in a vapor‐dominated hydrothermal area in Yellowstone National Park, USA: Inferences from magnetic, electrical, electromagnetic, subsurface temperature, and diffuse CO2 flux measurements. J. Geophys. Res. Solid Earth 124, 291–309 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Bedrosian, P. et al. Airborne electromagnetic survey processed data and models data release, Yellowstone National Park, Wyoming, 2016. US Geol. Surv. ScienceBase Data Release https://doi.org/10.5066/P9LVAU7W (2021).

  • Auken, E., Christiansen, A. V., Jacobsen, L. & Sørensen, K. I. A resolution study of buried valleys using laterally constrained inversion of TEM data. J. Appl. Geophys. 65, 10–20 (2008).

    ADS 

    Google Scholar
     

  • Munoz, G. Exploring for geothermal resources with electromagnetic methods. Surv. Geophys. 35, 101–122 (2014).

    ADS 

    Google Scholar
     

  • Jaworowski, C. et al. Geologic and geochemical results from boreholes drilled in Yellowstone National Park, Wyoming, 2007 and 2008. US Geol. Surv. Open-File Report 2016-1029, 1–38 (2016).


    Google Scholar
     

  • Bouligand, C., Glen, J. M. & Blakely, R. J. Distribution of buried hydrothermal alteration deduced from high‐resolution magnetic surveys in Yellowstone National Park. J. Geophys. Res. Solid Earth 119, 2595–2630 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Bouligand, C. et al. Geological and thermal control of the hydrothermal system in northern Yellowstone Lake: inferences from high resolution magnetic surveys. J. Geophys. Res. Solid Earth 125, e2020JB019743 (2020).

  • Finn, C. A. & Morgan, L. A. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park. J. Volcanol. Geotherm. Res. 115, 207–231 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Phillips, J. D. Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography. SEG Technical Program Expanded Abstracts https://doi.org/10.1190/segam2014-0226.1 (2014).

  • Phillips, J. D. Designing matched bandpass and azimuthal filters for the separation of potential-field anomalies by source region and source type. ASEG Extended Abstracts https://doi.org/10.1071/ASEG2001ab110 (2001).

  • Finn, C. A., Deszcz-Pan, M., Ball, J. L., Bloss, B. J. & Minsley, B. J. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability. J. Volcanol. Geotherm. Res. 357, 261–275 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Hersir, G. P. & Arnason, K. Resistivity of rocks. In Short Course IX on Exploration for Geothermal Resources 1–8 (United Nations University, Geothermal Development Company and Kenya Electricity Generating Co., 2014).

  • Dickey, K. A. Geophysical Investigation of the Yellowstone Hydrothermal System. MS thesis, Virginia Polytechnical Institute (2018).

  • Llera, F. J., Sato, M., Nakatsuka, K. & Yokoyama, H. Temperature dependence of the electrical resistivity of water saturated rocks. Geophysics 55, 576–585 (1988).


    Google Scholar
     

  • Jaworowski, C., Heasler, H. P., Hardy, C. C. & Queen, L. P. Control of hydrothermal fluids by natural fractures at Norris Geyser Basin. Yellowstone Sci. 14, 13–23 (2006).


    Google Scholar
     

  • McCleskey, R. et al. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, Beginning 2009. US. Geolog. Surv. Water Resources https://doi.org/10.5066/F7M043FS (2014).

  • Gardner, W. P., Susong, D. D., Solomon, D. K. & Heasler, H. P. Using environmental tracers and numerical simulation to investigate regional hydrothermal basins—Norris Geyser Basin area, Yellowstone National Park, USA. J. Geophys. Res. Solid Earth 118, 2777–2787 (2013).

    ADS 

    Google Scholar
     

  • Allis, R. Geophysical anomalies over epithermal systems. J. Geochem. Explor. 36, 339–374 (1990).


    Google Scholar
     

  • Bibby, H. M., Dawson, G. B., Rayner, H. H., Bennie, S. L. & Bromley, C. J. Electrical resistivity and magnetic investigations of the geothermal systems in the Rotorua area, New Zealand. Geothermics 21, 43–64 (1992).


    Google Scholar
     

  • Hedenquist, J. W., Goff, F., Phillips, F. M., Elmore, D. & Stewart, M. K. Groundwater dilution and residence times, and constraints on chloride source, in the Mokai geothermal system, New Zealand, from chemical, stable isotope, tritium, and 36Cl data. J. Geophys. Res. Solid Earth 95, 19365–19375 (1990).


    Google Scholar
     

  • Farrell, J., Husen, S. & Smith, R. B. Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J. Volcanol. Geotherm. Res. 188, 260–276 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Vaughan, R. G., Heasler, H., Jaworowski, C., Lowenstern, J. B. & Keszhelyi, L. P. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations. U.S. Geol. Surv. Scientific Investigations Report 2014-5137, 1–22 (2014).


    Google Scholar
     

  • White, D. E., Hutchinson, R. A. & Keith, T. E. The geology and remarkable thermal activity of Norris Geyser basin, Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 1456, 1–84 (1988).


    Google Scholar
     

  • Auken, E. et al. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data. Explor. Geophys. 46, 223–235 (2015).

    ADS 

    Google Scholar
     

  • Schamper, C., Auken, E. & Sørensen, K. Coil response inversion for very early time modelling of helicopter‐borne time‐domain electromagnetic data and mapping of near‐surface geological layers. Geophys. Prospect. 62, 658–674 (2014).

    ADS 

    Google Scholar
     

  • Auken, E., Christiansen, A. V., Jacobsen, B. H., Foged, N. & Sørensen, K. I. Piecewise 1D laterally constrained inversion of resistivity data. Geophys. Prospect. 53, 497–506 (2005).

    ADS 

    Google Scholar
     

  • Christiansen, A. V. & Auken, E. A global measure for depth of investigation. Geophysics 77, WB171–WB177 (2012).


    Google Scholar
     

  • Christensen, N. B. Sensitivity functions of transient electromagnetic methods. Geophysics 79, E167–E182 (2014).

    ADS 

    Google Scholar
     

  • Bhattacharyya, B. & Leu, L. K. Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. J. Geophys. Res. 80, 4461–4465 (1975).

    ADS 

    Google Scholar
     

  • Cordell, L. & Grauch, V. J. S. in The Utility of Regional Gravity and Magnetic Anomaly Maps (ed. Hinze, W. J.) 181–197 (Society of Exploration Geophysicists, 1985).

  • Revil, A. et al. Induced polarization of volcanic rocks–1. Surface versus quadrature conductivity. Geophys. J. Int. 208, 826–844 (2016).

    ADS 

    Google Scholar
     

  • Bargar, K. E. & Beeson, M. H. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming. Am. Mineral. 66, 473–490 (1981).

    CAS 

    Google Scholar
     

  • Bargar, K. E. & Beeson, M. H. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 1054-C, C1–C23 (1985).


    Google Scholar
     

  • Bargar, K. E. & Beeson, M. H. Hydrothermal alteration in research drill hole Y-6, Upper Firehole River, Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 1054-B, B1–B24 (1984).


    Google Scholar
     

  • Next Post

    Fed policymakers split on article-pandemic inflation landscape

    Table of Contents1 Sign-up now for No cost limitless entry to Reuters.com2 Sign up now for No cost limitless access to Reuters.com April 12 (Reuters) – U.S. central bankers are break up on whether significant inflation will be a recurring trouble in the future demanding recurring amount hikes, responses from […]

    Subscribe US Now